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Plant phenotyping is central to understand causal effects of genotypes and environments on trait expres-
sion and is a critical factor in expediting plant breeding. Previously, plant phenotypic traits were quan-
tified using invasive, time-consuming, labor-intensive, cost-inefficient, and often destructive manual
sampling methods that were also prone to observer error. In recent years, photogrammetry and image
processing techniques have been introduced to plant phenotyping, but cost efficiency issues remain
when combining these two techniques within large-scale plant phenotyping studies. Using these high-
throughput techniques in basic plant biology research and agriculture are still in the developmental
stages but show great promise for rapid phenotyping, which will materially aid both science and crop
improvement efforts.
In this study, we introduce an automated high-throughput phenotyping pipeline using affordable

imaging systems and image processing algorithms to build 2D mosaicked orthophotos. Chamber-based
and ground-level field implementations are used to measure phenotypic traits such as leaf length and
rosette area in 2D images. Our automated pipeline has cross-platform capabilities and a degree of instru-
ment independence, making it suitable for various situations.

� 2016 Elsevier B.V. All rights reserved.
1. Introduction tribute to yield in diverse crop species. O’Malley and Ecker
Global crop production and plant biology research are facing a
tremendous challenge in that current production rates will be
insufficient to meet the demands of the world’s population by
2050 (Bongaarts, 2014). Previous studies (Furbank et al., 2009;
Reynolds et al., 2009; Tester and Langridge, 2010) showed that tra-
ditional breeding programs cannot sufficiently increase annual
crop production for the three major cereal crops: rice, maize, and
wheat. In the past decade, advances in genetic technology, such
as next generation DNA sequencing, have provided new methods
to improve plant breeding techniques. With these new techniques,
breeders can potentially increase the rate of genetic improvement
by molecular breeding (Phillips, 2010).

Many molecular genetic studies have focused on Arabidopsis
thaliana, an important model system that has been used for identi-
fying plant genes and determining their functions (Arabidopsis
Genome Initiative, 2000). These studies have elucidated plant
developmental processes and pathways that may generally con-
(2010) reported that homozygous genome-wide knockout lines
were available in A. thaliana. Weigel and Mott (2009) generated a
sequence database of 1001 A. thaliana accessions, enabling com-
parative genomic analyses of yield. Similarly, the genome
sequences of many crops, such as rice, maize, wheat, sorghum,
and barley, have also been obtained due to the dramatic reduction
in sequencing costs in the past few years (Furbank and Tester,
2011). Because of high-throughput genotyping, it is possible to
develop large mapping populations and diversity panels for plant
breeding (McMullen et al., 2009).

Unfortunately, in contrast to high-throughput genotyping that
offers rapid and inexpensive genomic information extraction, con-
ventional plant phenotyping methods are still labor-intensive and
cost-inefficient. This greatly limits our ability to quantitatively
relate genes to plant growth, environmental adaptation, and yield.
Plant phenotyping methods for smaller plants, such as A. thaliana,
are mainly dependent on intensive manual work for sampling,
handling, and measuring plants often invasively, if not fully
destructively. Due to this time-consuming process, very few phe-
notypic measurements can be acquired during the entire growing
period (Arvidsson et al., 2011).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compag.2016.04.002&domain=pdf
http://dx.doi.org/10.1016/j.compag.2016.04.002
mailto:an_198317@hotmail.com
http://dx.doi.org/10.1016/j.compag.2016.04.002
http://www.sciencedirect.com/science/journal/01681699
http://www.elsevier.com/locate/compag
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In the past few years, there has been increased interest in high-
throughput phenotyping approaches in controlled indoor environ-
ments (Fiorani and Schurr, 2013). These new approaches linking
functional genomics, phenomics, and plant breeding are needed
to improve both crop production and crop yield stability and also
for efficient screening of high-yielding/stress-tolerant varieties
(Bolon et al., 2011). Walter et al. (2007) and Jansen et al. (2009)
used the GROWSCREEN/FLUORO system to measure chlorophyll
and leaf counts. Granier et al. (2006) utilized the PHENOPSIS sys-
tem to automate the soil water content control for screening soil
water deficit responses. Many studies (Furbank and Tester, 2011;
Dornbusch et al., 2012; Green et al., 2012; Chen et al., 2014;
Dornbusch et al., 2014) have extracted certain phenotypes using
LemnaTec Scanalyzer HTS systems (http://www.lemnatec.com)
that scan plant surfaces with imaging or laser systems to acquire
and analyze plant images, or 3D point clouds for extracting certain
phenotypic traits. The main advantage of the Scanalyzer HTS is that
it is a fully-automated processing pipeline containing image acqui-
sition, storage, management, and processing components, along
with some subsequent statistical analyses of the resulting data.

Some larger-scale, fully-automated high-throughput phenotyp-
ing facilities have also been deployed in the greenhouses or growth
chambers of private sector firms such as Monsanto and Dupont
Pioneer and a number of advanced national plant research institu-
tions, such as the Australian Plant Phenomics Facility, the European
Plant Phenotyping Network, and USDA. In these installations,
robotics, precise environmental control, and remote sensing tech-
nologies are used to monitor and assess plant growth and develop-
ment over time. However, such high-end facilities require budgets
far beyond those of most research laboratories and may not be
suitable for all situations, such as field environments.

To date, current field phenotyping approaches have mainly
focused on automated solutions for data acquisition using plat-
forms that integrate a vehicle, robotics, imaging systems, and sen-
sors. Although this is changing, less work has been directed toward
automating data storage, processing, and analysis. Due to these
considerations and limitations, high-throughput phenotyping
under field conditions has not yet reached its full potential.

Many previous indoor and field studies used imaging systems
(cameras or scanners) and invasive sampling methods (excised
plant parts) to extract phenotypic traits (Candela et al., 1999;
Pérez-Pérez et al., 2002; Cookson et al., 2007; Bylesjö et al.,
Fig. 1. Original image with optical distortion and perspective distortion. An original imag
distortion correction. The plants from the corners were seriously distorted and true dist
2008; Ali et al., 2012; Chitwood et al., 2012). These studies, how-
ever, did not take into account the optical distortion generated
by imaging system lenses and the perspective distortion created
by the angle of view. True distances and areas cannot be deter-
mined from a 2D image if either optical distortion or perspective
distortion are present, and merely facing the imagers straight
down does not fix this problem. In particular, when closely packed,
the large number of plants more toward the corners of each frame
will be distorted by the perspective viewing angle of the wide-
angle lens (Fig. 1). The optical distortion and perspective distortion
of the imaging system must therefore be removed before measur-
ing any geometric quantities from a 2D image.

The objectives of this study are to (1) present a low-cost and
fully-automated high-throughput imaging-based phenotyping
pipeline suitable for both controlled environments and the field,
(2) develop novel image processing algorithms for measuring
time-series leaf length and 2D rosette area, and (3) model the rela-
tionship between rosette area and total leaf expansion.
2. Materials and methods

2.1. Imaging pipeline characteristics and design

The pipeline presented here has three advantages compared to
other existing systems: (1) a low-cost imaging system, (2) ele-
ments of instrument independency, and (3) cross-platform capa-
bility. The first advantage is that off-the-shelf, low-cost digital
cameras were used as imaging devices. This technique allows phe-
notypic traits (e.g., leaf length, rosette area, diurnal plant nastic
movements, and plant vegetation conditions) to be extracted and
measured directly from images.

The second advantage of this pipeline is a degree of instrument
independency. For example, high-level scripts were used to inter-
face with camera-manufacturer-supplied image processing soft-
ware. Because many camera manufacturers provide similar tools,
exchanging cameras becomes mainly a matter of altering those
interface scripts. The image analysis algorithms can also be modi-
fied based on image features for different image sensors. For exam-
ple, we successfully integrated a multispectral image sensor in our
pipeline on a moving platform with proper modifications for
computing vegetation indices.
e from indoor environment showing plants before optical distortion and perspective
ances and areas cannot be measured directly from the image.

http://www.lemnatec.com


378 N. An et al. / Computers and Electronics in Agriculture 127 (2016) 376–394
The third advantage is cross-platform capability. Although the
image data acquisition and data transfer methods may vary in dif-
ferent applications, the pipeline has a generic structure so that it
can be deployed on different phenotyping platforms in multiple
environments with minimal modification. Specifically, the pipeline
was deployed on two different imaging platforms: a stationary
growth chamber platform and a movable field platform. The novel,
generic features enabling the pipeline to operate in these very dif-
ferent environments are outlined next.

As depicted by the flowchart shown in Fig. 2, the pipeline con-
tains five sections. (1) Image data acquisition used different plat-
forms in indoor vs. field environments to collect time-series
images of plant development. Indoor, stationary imaging systems
were designed and mounted on each of six shelves in a growth
chamber of University of California, Davis (UCD). At the University
of Wyoming (UWY), a mobile imaging system was developed for
use in the field. (2) Image data storage, transmission, and manage-
ment involved the use of servers at UCD, UWY, the iPlant Collabo-
rative (http://www.iplantcollaborative.org/) and Kansas State
University (KSU). For both the chamber and field experiments,
images were stored locally and then transmitted via iPlant to
KSU. This resulted in three complete backups of all image sets:
Fig. 2. Pipeline
one at the origin, one at iPlant, and one at KSU. (3) Image processing
operations include pre-processing, orthophoto generation, and
image segmentation. (4) Metadata reconciliation is necessary
because metadata generated by different sources (i.e., human-
entered data and/or some automated data) may conflict regarding
the identity of each image. Reconciliation yields the most accurate
pairings of genotype and phenotype data. (5) Phenotypic trait
extraction includes the machine-vision operations that yield the
biological data that comprise the ultimate goal of the system.
Python, a high-level scripting language, was used to connect and
automate the pipeline sections.

2.2. Imaging platform

2.2.1. Indoor imaging platform
The pipeline development was part of a growth chamber exper-

iment conducted at UC Davis for studying the shade-avoidance
response within 8 recombinant inbred line (RIL) populations of A.
thaliana that have the Col accession as a recurrent parent. A total
of 108 Canon Powershot S95 cameras were mounted facing
straight down on six shelves—three of which simulated sun and
the other three shade (Fig. 3A and B). On each shelf, 18 cameras
workflow.

http://www.iplantcollaborative.org/


Fig. 3. Indoor imaging platform. (A) and (B) show the chamber imaging system on each shelf. (C) is an individual image from one camera. The color-dot system was used to
track 4-by-4 pot flat rotation during the growing period. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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were mounted in a 2-row stationary camera frame 0.4-m above the
shelf surface. Each shelf held 24 (three rows of eight) 4-by-4 pot
flats within a 0.80-by-2.13-m area. The overall plant density was
225 m�1.

Each camera was assigned a three-digit ID comprised of shelf
number (1–6), row number (1–2), and camera position (1–9), in
that order. Fig. 3C is one individual image showing the field-of-
view (FOV) of each camera and the color dot system for tracking
plant rotation. (The color-dot system is described below in the sec-
tion on indoor genotype assignment.)

All cameras were set on manual focus and exposure modes
(F7.1, 1/25 s, auto white balance), and a 28-mm (35-mm equiva-
lent) focal length. The FOV overlap between two adjacent cameras
was 50%. A modified intervalometer script and the Canon Hack
Development Kit (CHDK) firmware were installed on all cameras
to trigger them simultaneously at the start of each hour. In order
to prevent camera overheating, the script turned off their LCD
screens after each image was taken. All of the images were saved
as Canon CR2 RAW format to preserve the maximal amount of geo-
metric, spectral, and camera information.
Fig. 4. Field imaging platform. The ground-level field imaging setup. Two Canon
DSLR cameras were mounted with an angle. Two flashes with diffusers were
mounted on the side bars for creating a uniform illumination condition.
2.2.2. Field imaging platform
The same genotypes of A. thaliana used in the chamber were

also planted outdoors at the UWY Plant Science Station in Laramie.
Plants were grown for a few days in plastic net pots in the green-
house and then transplanted to the field in a randomized block
design. They were placed in a 10-cm grid with 14 rows and 6 col-
umns. Two Canon EOS REBEL T3i DSLR cameras with Canon EF
20 mm f/2.8 wide-angle lens were mounted on a moveable camera
frame at a 95-cm above the ground (Fig. 4). Instead of facing
straight down as in the chamber pipeline design, both cameras
were mounted angled slightly toward each other to maximize
the overlap area of their 80-percent respective FOV.
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For stability and repeatability, the camera mount was placed on
a metal frame surrounding each plot. The inner frame dimensions
were 153.0 cm by 73.6 cm. To image the whole plot, the camera
mount was first manually moved to six fixed positions in sequence
and pictures were taken. These six pairs did not fully capture all
plants, but, because the cameras were on one side of the mount,
a seventh position would only have seen the ground outside the
plot. Therefore, the camera mount was turned 180� and a final, sev-
enth pair of pictures was taken.

Two Canon flashes with diffusers were attached on opposite
sides of the camera mount. These minimized camera mount shad-
ows and the effects of ambient light changes during imaging ses-
sions. Each flash was camera-controlled through an extension
cable. Both cameras were set on manual focus and exposure modes
(F9, 1/200 s, auto white balance). A customized camera trigger
(Industrial Underground Inc., Boulder, CO) was built so both cam-
eras fired simultaneously.

2.3. Image storing, management, and transfer

2.3.1. Indoor image storing, management, and transfer
All cameras were connected to a local UCD data server at via

USB cables for transferring images automatically. A Perl script
deleted nighttime images (9:00 pm to 4:00 am) and renamed the
daytime image files using a combination of the imaging date, time,
and camera ID. Although all of the 108 cameras were mounted in
landscape orientation, the built-in auto rotation function of the
cameras would sometimes rotate images to portrait orientation,
creating problems in subsequent steps. To fix this, the Perl-based
ExifTool program (http://www.sno.phy.queensu.ca/~phil/exiftool/)
was integrated into the pipeline to automatically rotate any RAW
images found to be in portrait orientation. Each night, the pre-
processed RAW images were transferred to iPlant data stores at
the University of Texas and, from there, to a server at KSU. Once
the images reached the KSU server, they were organized into
different subdirectories based on the imaging date, time, and shelf
number. This set of transfers resulted in three redundant copies of
the images being maintained at UCD, iPlant, and KSU.

2.3.2. Field image storing, management, and transfer
For field image storing and transfer, images were first down-

loaded from the cameras onto a local computer at UWY and then
transferred to the data server at KSU via iPlant. Whereas the indoor
system used camera IDs and dates to organize the images, QR
codes containing block and plot numbers were employed in the
Fig. 5. Field image data management. Three successive images from one camera. Left to
plot with a QR code held in the camera view, and the same plot view with the QR code rem
pixels. The QR code is then read to identify the new plot and the block that contains it.
field (Fig. 5). The QR-code images were first automatically recog-
nized within the stream of images by computing a color histogram
and looking for a large number of white pixels. The images contain-
ing QR codes were converted to binary using a threshold that
removed shadows, then ZBar (http://zbar.sourceforge.net/), a free-
ware QR coder reader integrated into the pipeline, extracted the
block number and plot number. These data were used to group
the subsequent images into a directory named by image date,
block, and plot information.

2.4. Missing camera detection mechanism of indoor imaging pipeline

During the imaging period, occasionally some cameras would
accidently turn off, possibly due to unstable CHDK firmware. If
not immediately detected and corrected, gaps in phenotypic data
would result. Therefore, we included in the pipeline a mechanism
for detecting missing cameras based on tracking the cameras’ IDs
in the image names. When missing camera IDs were detected,
the pipeline automatically sent an email reporting the problem
so it could be manually fixed.

2.5. Pipeline control

Agisoft Photoscan Pro (Photoscan), further described below,
includes a Python scripting application program interface (API)
whose intent is to allow users to automate its capabilities. This
was exploited to control all pipeline functions, including, in some
cases, programs completely external to Photoscan. The sequence
of pipeline operations is described in the following sections.

2.6. Image pre-processing

There were two corrections performed during the image pre-
processing section: color correction and image optical distortion
correction. Both corrections as well as conversion to the TIFF file
format were performed by the Canon Digital Photo Professional
(DPP) program.

2.6.1. Image color correction
Due to illumination variation across the shelf, the camera color

responses differed slightly. For better plant segmentation process-
ing in the following step, the DPP white balance operation was
used to correct RAW image colors. Enabling this was the reason
that the spectrally-lossless RAW file format despite its large
memory requirement. Wide-angle lenses are also susceptible to
right they are: the last image from the preceding plot, the first image from the next
oved. The image containing the QR code is recognized by its large number of white

http://www.sno.phy.queensu.ca/<ucode type=
http://zbar.sourceforge.net/


N. An et al. / Computers and Electronics in Agriculture 127 (2016) 376–394 381
vignetting effects that reduce image brightness at the periphery.
This can complicate color segmentation but was also corrected
during this process. Color correction effectiveness was verified by
photographing a customized color-grid poster.

2.6.2. Image optical distortion correction
Few previous image-based phenotyping studies have consid-

ered lens distortion when extracting leaf shape parameters (length,
width, and area). This omission reduces measurement accuracy for
plants not at the image centers. The RAW file format also enabled
linkage to manufacturer-provided lens data for correcting plant
geometric distortion—another function built into DPP. After image
color correction and optical distortion correction the memory-
intensive RAW format was no longer needed so TIFF image files
were exported. The color-grid poster was also used for verifying
the image optical distortion correction.

2.6.3. DPP automation
A design drawback of DPP is that it assumes a humanwill be using it

to correct a small number of images. Thus, it lacks any automation capa-
bilities. Therefore, AutoIt (https://www.autoitscript.com/site/autoit/), a
BASIC-like scripting language, was used to automate the DPP
graphical user interface (GUI). This language simulates user mouse
clicks and text entries. While this may seem cumbersome, it is a
major advantage of the pipeline. Aside from the Perl script
described, the AutoIt script is the only element of the pipeline that
Fig. 6. Orthophoto processing. (A) The mosaicked orthophoto for half-shelf; (B) detected p
plant binary image.
would have to be altered if a different brand of camera and
manufacturer-provided image correction software were adopted.

2.7. Orthophoto generation

The final type of correction removed image perspective distor-
tion. This was done by generating orthophotos, which are synthetic
images produced as if each pixel is being viewed straight down.
Thus, orthophotos permit geometric quantities such as 2D
distances and areas to be measured with perspective effects
removed. The Agisoft Photoscan Pro (Photoscan) program
(http://www.agisoft.com) performed this step using the TIFF
images output from DPP. This was done in nine-image subsets,
each of which covered one half-shelf. (The original intent was to
do full shelves but it was discovered after plants were added to
the chamber that the vertical camera spacing did not permit
this—a design flaw to be avoided in the future.) The program
converted each set to an orthophoto. However, in the process of
implementing this step, a subtle difference between the chamber
and the field was uncovered that affected the best way to do this.
This is described in the following two subsections.

2.7.1. Indoor environment image rendering method
Photoscan has four alternative rendering options for producing

orthophotos: Mosaic, Average, Max Intensity, and Min Intensity.
These govern the coloring method used to merge corresponding
ot binary image; (C) generated 4-by-4 grid overlaid on the orthophoto; (D) detected

https://www.autoitscript.com/site/autoit/
http://www.agisoft.com
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pixels from different images into the orthophoto. It was discovered
that a wrong choice could have side effects for the small fraction of
leaves having greatly different orientations as seen by separate
cameras. Specifically, the leaves would appear to be ghost-like
double exposures. This was corrected by choosing the Mosaic
method that favored the camera whose view of ghost leaves was
most vertical. An example orthophoto is shown as Fig. 6A.
2.7.2. Field image rendering method
When used in the field, the Mosaic rendering method left pro-

nounced shadows in the orthophoto that complicated subsequent
processing steps. This was resolved by using the Average rendering
method. This produces a more uniform orthophoto because areas
that were shadowed by the camera mount in one image would
often be sunlit in others. Because it blends pixels, the Averaging
method reduces shadow contrast.

To summarize the pipeline control description, Python scripts
written and executed within Photoscan first invoke AutoIt to run
a script in that language simulating user keystrokes and mouse
clicks instructing DPP to remove lens and color distortion and pro-
duce TIFF formatted images. Once AutoIt processing is finished, the
Python script then initiates Photoscan operations that produce the
orthophoto. The same script then continues, executing the opera-
tions described in the following sections.
2.8. Image segmentation

2.8.1. Pot segmentation
In order to extract individual plants from each chamber ortho-

photo, the first step is to apply image segmentation to identify the
pots. This was done using the following equation:

Pot ¼ bwðBlue� RedÞ;

where Blue and Red are the respective blue and red channel pixel
brightness values, and bw() is the Otsu threshold method (Otsu,
1975) for binary image transformation. Due to the slight illumina-
tion variation across each shelf, some of the pot edges could not
be detected. The probabilistic Hough Transformation (Duda and
Hart, 1972) was implemented in Python to identify the line seg-
ments and fill in the missing pot edges (Fig. 6B). A 4-by-4 grid
was generated for the pots in each flat based on their known dimen-
sions (Fig. 6C).
Fig. 7. Field single plant extraction and genotype assignment. The orthophoto of a plot w
assignment.
2.8.2. Plant segmentation
Plant segmentation, the process of removing unwanted image

features like soil, pots, or other items, is the next process applied
to each orthophoto. The well-controlled illumination sources and
image color corrections in the previous step enabled a simple veg-
etation index to be used for quick plant segmentation. The Normal-
ized Green–Red Difference Index (NGRDI; Hunt et al., 2005) is
similar to the well-known Normalized Difference Vegetation Index
(NDVI). However, NDRDI is more useful to distinguish healthy veg-
etation from background in cameras that have not been modified
to be infrared-sensitive. The Otsu threshold method then trans-
formed grayscale NGRDI images to a binary form in which the
plant pixels were white and all non-plant pixels were black. The
NDRDI equation in this study is as follows:

Plant ¼ bw
Green� Red
Greenþ Red

� �
;

where Green is the green channel pixel brightness value and Red
and bw() are defined above. Fig. 6D shows processed binary ortho-
photo. The NGRDI equation was implemented in Python and the
Otsu threshold was from the Open Source Computer Vision Library
(OpenCV; http://opencv.org/).

2.9. Plant genotype assignment

2.9.1. Indoor pipeline genotype assignment
Although growth chambers are well controlled, there are still

temperature and lighting gradients that can affect plant growth
and development. It is therefore common practice in Arabidopsis
experiments to randomly reshuffle flats of pots every two to three
days. Flat movements are recorded in spreadsheet form, but, to
provide redundancy within the image data, each flat was assigned
a unique three-color dot combination. A color-dot detection and
decoding routine was integrated into the processing pipeline for
automatically tracking flats so that the proper genotypes of each
plant could be paired with the ultimate measured phenotypes.

2.9.2. Field pipeline genotype assignment
Because plants were arranged in a 14-by-6 grid within each

field study plot, a Python routine in the pipeline generates a like-
sized grid on each orthophoto for plant extraction. However, it
was discovered that plot orthophotos needed to be cropped first
so that the extraction grids were properly placed despite some
ith an automatically-generated black grid for single-plant extraction and genotype

http://opencv.org/


Fig. 8. Image optical distortion correction. (A) The image before the image optical distortion correction. The red reference line on the top shows the curvature of the edge of
the color grid. (B) The image after the image optical distortion correction. The edge of the color grid shows straight comparing the red reference line. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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irregularities in the planting grid placement within each plot
(Fig. 7). Each plant was then extracted into a single image named
according to plant position and QR-coded block and plot numbers.
This information was paired with the genotype metadata collected
when plant locations were assigned.

2.10. Phenotypic traits extraction

2.10.1. Leaf length and total leaf expansion calculation
The key step in measuring leaf length is the detection of the

rosette center and leaf tips on each single-rosette binary image.
The contours of each binary image were analyzed first and the
image moments were then calculated (https://en.wikipedia.org/
wiki/Image_moment). The rosette center was estimated using the
binary image centroid of all white (i.e., plant) pixels. That is:
ð�x; �yÞ ¼ M10

M00
;
M01

M00

� �
;

where �x and �y are the coordinates of the binary image centroid and
Mij are image moments.

Using the calculated rosette center as the origin, a radial scan
was executed on the binary image to yield a curve representing
the traced rosette outline in a 2D plot. The leaf tips, being the
points most distant from the plant center, should be the peaks of
the curve just described. However, at first it was challenging to find
accurate peak locations due to leaf edge roughness. This was even
more complicated when parts of the leaves appeared to be missing
due to damage or segmentation faults. Therefore, the rosette-
outline curve was first smoothed with a Savitzky–Golay filter
(Savitzky and Golay, 1964) to remove small, erroneous maxima.

https://en.wikipedia.org/wiki/Image_moment
https://en.wikipedia.org/wiki/Image_moment


Fig. 9. Image color correction. (A) The image before the image color correction. The green tone of the image was due to shelf illumination. (B) The image after the color
correction shows that the green tone was removed. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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The next step was to fit a Chebyshev polynomial (Tchebychev,
1854) to the smoothed rosette-outline curve. Putative peaks were
then located by calculating the roots (i.e., zeros) of the first deriva-
tive of the Chebyshev polynomial curve. This procedure still
yielded false leaf tip positions occasionally.

Therefore, as a third step, the peak widths were analyzed using
the x coordinates of the rosette-outline curve to find the minimum
peak width, which was used as the length of a moving window
centered at each detected curve peak. Within this moving window,
the maximum of the fitted rosette-outline curve and the maximum
of the original rosette-outline curve were compared. The true peak
locations were recovered if the maximum of the original rosette-
outline curve was higher. The pixel coordinates of the leaf tips
were calculated based on the curve peak locations. The length of
each leaf was measured as the distance from the rosette center
to the leaf tip. The ‘‘total leaf expansion” of each plant was defined
as the sum of all of the leaf lengths.
2.10.2. Rosette area calculation
The rosette area in each single-rosette binary image can be sim-

ply calculated by computing the total number of white pixels in
each single-rosette binary image.
2.11. Statistical modeling

Chitwood et al. (2012) manipulated far-red light to induce
changes in leaf length as an index of the shade-avoidance response.
This study demonstrated a linear relationship between total leaf
length and square root of the total leaf area. To test the relationship
between total leaf expansion and rosette area using our workflow,
we fit the phenotype data with the following equation as part of
the pipeline:

Total Leaf Expansion ¼ a � Rosette Areab
;



Fig. 10. Image perspective correction. (A) and (B) were plant 1 and plant 2, respectively, before the perspective distortion correction, and (C) and (D) were the same two
plants after the correction. The perspective distortion correction can: (1) showmore leaf area when that leaf was not flat (as red-box-highlighted), and (2) show the corrected
leaf positions (as blue-box-highlighted). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. Indoor orthophoto-rendering methods comparison. (A) and (B) show the same plant photographed by two adjacent cameras. The leaf positions were not consistent
due to different viewing angle. When the Average rendering method was used, the ‘‘ghost-leaves” issue confused segmentation algorithm, as in (C). The Mosaic blending
method could provide better image for segmentation, as in (D).
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Fig. 12. Field orthophoto-rendering methods comparison. (A) is the ground-level plot orthophoto using Mosaic blending method; (B) is the orthophoto for the same plot
using Average blending method. Notice that the camera mount shadows are minimized in B.
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where a and b determine the trajectory and shape of the power law
function, respectively.

The a and b parameters were estimated using the Levenberg–
Marquardt non-linear least square method. Bootstrap resampling
was used to calculate their 95% confidence intervals (CI) based
on 10,000 simulations. The power law function and the least
square estimation were implemented using Python Scipy package.

2.11.1. Indoor pipeline data analysis
Data for total leaf expansion and rosette area collected at 8, 10,

12, and 14 days after plant emergence were analyzed. These time
points were selected so that: (1) the plants were big enough to dis-
tinguish individual leaves from the start, (2) the final image had a
large rosette, but (3) final leaf overlaps between adjacent plants
were minimal. All of the images from the indoor pipeline were
taken at 6:00 am to minimize any possible ambient influences.

2.11.2. Field pipeline data analysis
The genotypes examined in the indoor environment were also

tested in the field. The same power law was fit to data collected
on six different days. They were selected from an 18-day period
in which Day 1 was the third day after transplantation from the
greenhouse. This was followed by five subsequent dates, each
three to four days apart as determined by weather conditions.

3. Results and discussion

3.1. Indoor imaging pipeline throughput capability

Because there was a certain amount of unavoidable manual
work during image acquisition in the field, overall throughput
capability was evaluated using the completely-automated indoor
pipeline.

Orthophoto generation, which initially required 38 CPU-
minutes per half-shelf, was the most time-consuming process in
the entire pipeline. By implementing High Performance Computing
(HPC) routines using OpenCL and AMD GPUs in the pipeline, this
processing time was reduced to 25 min per half-shelf orthophoto.
These HPC routines were also utilized in other steps. It took
approximately six to eight minutes to detect pots and decode the
color dots for genotype assignment, then two minutes for extract-
ing phenotypic trait data (e.g., total leaf expansion, rosette area).
Therefore, the total runtime of the entire processing pipeline was
35 min maximum for each half-shelf.

The second method for improving pipeline throughput was to
use distributed parallel computing to spread the processing tasks
across a small computing cluster. Two split half-shelf orthophotos
from each shelf were processed by two nodes simultaneously. For
the chamber application, there were 24 4-by-4 pot flats on each of
the six shelves, which made 2304 plants photographed hourly.
Because imaging was conducted for 16 h per day, a total of
36,864 single-plant pictures were obtained each day. Each cluster
node processed 192 plant images in 35 min, equating to 10.94 s
per plant on average. Therefore, the hourly throughput is 329
plants per hour per cluster node and the runtime for processing
16 h of single-rosette images on the six-node cluster is 11.2 h.

This pipeline was fast because all 108 cameras took images for
six shelves simultaneously. The times for image storing, manage-
ment, and transfer have not been included in this analysis because
of variation in local network and internet speeds. In the future,
when the processing pipeline is executed on a local computer clus-
ter at UCD for minimizing data transfer time, all 2304 plants can be
screened within an hour.
3.2. Image analysis

3.2.1. Image optical distortion and color correction
The 28-mm focal length caused the optical distortion to be quite

visible at the image periphery. Fig. 8A shows the color-grid image
before optical distortion removal. The straight red reference line



Fig. 13. First iteration of leaf tip detection. The first iteration of the Chebyshev Polynomial fitting for detecting the peaks of the rosette-outline curve, then the corresponding
leaf tips on the single-rosette binary image can be found. In the plot, the red curve is the original outline curve, the blue curve is the Chebyshev Polynomial fitting curve, and
the blue-dashed curve is the first derivative of the fitted curve. A damaged leave (as pictured zoomed-in) can show false tips due to the roughness or the damage of leaf edges.
The corresponding plant outline curve and peaks are also highlighted. The green-curved arrow shows the direction of the radial scan. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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drawn on the image reveals the color grid curvature caused by the
optical distortion. The restored alignment of the red reference in
Fig. 8B shows that using Canon DPP and the lens profile database
was accurate and efficient at removing such distortion.

Due to variation in shelf illumination and camera firmware dif-
ferences, the original images were greener than the original RGB
values of color grids. After comparing different image color correc-
tion packages, the Canon DPP software provided reasonably accu-
rate color correction via its white balance function. After color
correction, the green tone was removed and the photographed
RGB values were very close to the original (Fig. 9).
1 For interpretation of color in Fig. 11, the reader is referred to the web version o
this article.
3.2.2. Image perspective distortion correction
Fig. 10A and B shows two plants at the corner of an individual

frame taken from extreme corners of the shelf where both factors
combine to generate perspective distortion. The effects of perspec-
tive are clear because a great deal of pot wall can be seen compared
to plants at the image centers, where less wall is visible. Due to this
issue, direct measurements from the image centers and corners are
not comparable; Fig. 10C and D shows that after re-projecting each
pixel vertically. The sidewalls of the pots were largely corrected
compared to the uncorrected images. Moreover, the red-box-
highlighted leaves showed more leaf area in the corrected image
for both of the plants when the leaves were not entirely flat.

Moreover, the blue-box-highlighted leaves show that leaf posi-
tions were also corrected. For plant 1 (Fig. 10A), the two leaves in
the blue box showed a side-by-side position, but in reality, the
smaller leaf was under the big leaf, as the corrected image shows
(Fig. 10C). For plant 2, the two leaves highlighted by blue boxes
overlapped in the uncorrected image but were distinguished
clearly after correction (Fig. 10B and D). Although smaller leaves
could not be counted when covered by bigger leaves, the perspec
tive-distortion-corrected images will provide more accurate leaf
length and rosette area measurements, which are more critical
when studying leaf shade-avoidance responses.
3.2.3. Rendering methods for indoor and field orthophoto
Most previous studies did not use orthophotos for quantifying

phenotypic traits from 2D images and therefore did not have occa-
sion to compare rendering methods and the defects they can occa-
sionally introduce. Fig. 11 illustrates the double image ‘‘ghost
leaves” problem described earlier and how it was resolved using
the Mosaic method, which colors1 the orthophoto using the image
pixels that resolve as being closest in 3D space.

The red-box-highlighted leaves in Fig. 11A and B were pho-
tographed with different viewing angles by adjacent cameras 514
and 515. In this instance, a small leaf was covered by a bigger leaf.
Camera 515 photographed them at an oblique angle so both leaves
were visible to this camera but not to Camera 514. Because of this,
under the Average rendering method, which blends corresponding
pixel colors from both images, the highlighted leaf appears twice in
f



Fig. 14. Second iteration of leaf tip detection. The second iteration for running the optimization algorithms. A smoother curve was fitted to the original outline curve and then
a moving window was centered at each peak to locate the highest peak (black triangle markers on the curve) in the window. The zoomed-in view shows that a better leaf tip
is detected. The zoomed-in view of the curve shows that the corresponding peak of the original outline curve (red curve) is detected at the black triangle marker. The true leaf
tips could be relocated on the binary image. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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the orthophoto (Fig. 11C). This defect would subsequently confuse
the leaf tip detection algorithm. However, in Fig. 11D, when the
Mosaic rendering method was used, the plant outline was not con-
fusing and the ‘‘double-leaf” issue disappeared.

There are actually three defects in Fig. 11 which need to be dis-
cussed: one is partial overlap (top red box), one is different viewing
angle (middle red box), and the last is complete overlap (bottom
red box). With the Average method, all three create spurious leaf
tips due to differences in the ‘‘opacity” of the double images. How-
ever, the Mosaic method fixes this issue at the cost of occasionally
losing an entire leaf (bottom red box).

On the other hand, in the field environment, the two cameras
were relatively far away from the plants, so the viewing-angle
issue was not as pronounced as in the chamber. Instead, the major
problem affecting rendering was strong ambient illumination by
sunlight, which cast constantly-changing shadows of the moving
camera mounts into the plots. Originally, it was thought that the
flashes could be used to completely eliminate shadows. Unfortu-
nately, this required very high intensity, which saturated image
brightness. Therefore, a lower setting was used in combination
with the Average rendering method to improve the consistency
of orthophoto brightness. Fig. 12A shows pronounced camera
mount shadows when the Mosaic rendering method was used.
Subsequent image segmenting by color analysis was not able to
achieve equal results at identifying plants under shadowed and
non-shadowed conditions. However, in Fig. 12B, the orthophoto
produced by the Average rendering method shows more uniform
brightness throughout the entire plot. These images could be suc-
cessfully segmented even though the shadows were not com-
pletely eliminated.
3.2.4. Field QR codes imaging and processing
QR codes provided a very efficient way to store plot metadata

and organize plot images. Initially, the ground-level field pipeline
could successfully recognize all of the QR-code images among
other field images by analyzing the histograms of the images. How-
ever, despite easy recognition, the Zbar reader sometimes failed to
extract the data when camera mount shadows fell on the QR codes.
To solve this issue, the brightness and contrast of all QR-code
images were first increased to minimize the shadow and then
thresholded to produce a shadow-free binary image. With this
improvement, all QR codes were successfully decoded and the plot
metadata accurately extracted.
3.2.5. Leaf tip detection refinement
Fig. 13 illustrates the irregularities leading to the initial detec-

tion of false tips (described above) that compromise accurate
length and total leaf expansion measurements. However, the addi-
tion of tip windowing to Savitzky–Golay filtering and Chebyshev
Polynomial fitting (Fig. 14) resulted in the shifting of peak locations
back to the original radial-scan-yield curve peak locations, the
recovery of true peak locations, and the elimination of many false
peaks. These optimization operations provide much more accurate
rosette-outline peaks for positioning the true leaf tips on the
single-rosette binary image. The method was especially accurate



Fig. 15. Relationship of rosette area and total leaf expansion for indoor environment. The relationship between rosette area and total leaf expansion fitted with a power law
function. The exponents of the power law function decrease from Day 1 (the eighth day after plant emergence) to Day 4 (the fourteenth day after plant emergence). At the
early developmental stage, the exponent is close to 1 (a linear relationship), and at the late developmental stage, the exponent is close to 0.5, matching a previous study.
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and efficient for finding the leaf tips when the leaves were dam-
aged, as was the case in Fig. 14 example.
3.3. Relationship between rosette area and total leaf expansion

3.3.1. Relationship for indoor pipeline
The estimated power law exponent, b, from observation date 1–

4 is 0.836 (Fig. 15A), 0.753 (Fig. 15B), 0.750 (Fig. 15C), and 0.636
(Fig. 15D), respectively, indicating a change in shape from near-
linearity to a more curved relationship. The distribution of boot-
strap estimates for a and b obtained from 10,000 simulations are
shown in Fig. 16. The mean, median, and mode for a and b, respec-
tively, are very close to the original estimate from the least squares
fit.

Because the confidence limits for the four observation dates do
not overlap, it can be said that b decreases with time while the
slope, a, factor increases, although there is considerable uncer-
tainty about the values of a. However, the range of values for b is
within the reasonable expectations of being not greater than 1
and not less than 0.5. These values are consistent with the idea
young leaves mainly grow by elongation. However, in later devel-
opmental stages, total leaf expansion slows relative to leaf-width
growth increases, which become the main contributor to increas-
ing rosette area. Chitwood et al. (2012) reported a linear relation-
ship between total leaf length and square root of the total leaf area
(i.e., b = 0.5) for tomato leaves at a late developmental stage. This
result is very similar to our finding of b = 0.636 during late
development.

This dynamic relationship between total leaf expansion and
rosette area has not been reported previously, quite possibly
because destructive sampling made it impossible to collect time-
series data from the same plant during growth. Our non-invasive
imaging method, however, can be used to track the time-series
development pattern for single plants in genetic mapping
populations.
3.3.2. Relationship for field pipeline
The estimated power law parameters a and b and curves for

observation dates 1–6 in the field are shown in Fig. 17A–F, respec-
tively. The b values also followed a descending trend over time.
Fig. 18 shows the analyses of the parameter distributions and the
bootstrap 95% confidence intervals. This result follows what is seen
in the chamber; that is, b is close to 1 at the beginning of the
growth period but decreases over time. As above, the confidence
intervals of the first and last days do not overlap, showing that a
increases with time and b falls. Again, b showed the pattern of
being close to 1 earlier and not less than 0.5 later. This also appears
similar to the Chitwood et al. (2012) result.

It is noticeable that the b value increased on the last observation
date and that there is an high-valued outlier (circled in Fig. 17F).
Fig. 17G shows that this outlier was from a bolting plant that
yielded a confusing single-rosette binary image. The center part
of this binary was missing due to bolting, and a noisy plant outline



Fig. 16. Parameter estimations for indoor environment. The distribution histograms of the parameters a and b of four different time points. Figure (A)–(D) stands for Day 1 to
Day 4, respectively. The green histograms are the distributions for parameter a and the blue histograms are for parameter b. Red-dashed lines stand for 95% confidence
intervals and black-dashed lines are estimated parameters. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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Fig. 17. Relationship of rosette area and total leaf expansion for field environment. The highlighted data point in (F) is an outlier. (G) is the same as last day after outlier
removed.
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Fig. 18. Parameter estimations for field environment. The analyses of the parameter distributions and the bootstrap 95% confidence intervals.

Fig. 19. Original image and analyzed image of the outlier. Highlights outlier from Fig. 17F. This plant started bolting on Day 6, which led to a confusing orthophoto. The
segmented binary image missed the plant’s central section and false leaf tips were detected, which caused reduced rosette area but increased total leaf expansion.
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caused falsely-detected leaf tips (Fig. 19). After removing this out-
lier, the b value dropped to 0.749.

It is possible the parameter b would keep decreasing if a few
more time points could be used. However, after the sixth
observation date, many genotypes started bolting, which created
difficulties in generating clean binary images and decreased
the reliability of the total leaf expansion and rosette area
measurements.
4. Conclusion and perspectives

Our HTP pipeline deals with many photogrammetric issues that
have not been previously considered in most biology studies.
Images were first processed for optical and perspective distortion
removal to make sure the true geometric quantities (e.g., distance
and area) could be measured based on 2D images. Next, mosaicked
orthophotos of each shelf were created hourly for a mapping pop-
ulation. Last, segmented single-rosette images were extracted from
the orthophotos for measuring leaf length and rosette area with
our novel image processing algorithm. This method transforms
computing-expensive image processing operations to mathemati-
cal curve fitting problems and provides a reliable solution for leaf
tip detection in the face of leaf irregularities, segmentation errors,
and damage.

Our imaging system and pipeline is capable of being scaled up
for larger indoor environments, such as greenhouse imaging sys-
tems. More plants can be imaged within each image frame without
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losing any details by using newer digital cameras with wide-angle
lens. However, the current pipeline throughput might be limited
by the bottleneck of the data transfer rate between cameras, clus-
ter nodes and data storage, but this can readily be minimized by
adding faster network hardware and more cluster nodes.

With this framework of phenotyping, time-series phenotypic
traits of a mapping population can be extracted and analyzed in
a short period of time. In this study, we found a power-law corre-
lation between total leaf expansion and rosette area from our time-
series analysis. At the early developmental stage, this relationship
was close to linear; toward the end of the developmental stages,
the exponent started decreasing. The late-stage finding is very sim-
ilar to the results reported by Chitwood et al. (2012).

There are still some aspects of the current pipeline that need to
be improved for future work. The color-dot system of chamber
study was used to track flat position and orientation changes in
the orthophoto. However, the QR-code approach proved its robust-
ness and feasibility for storing metadata and could be competitive
in chamber settings to enable genotype assignment. Moreover,
aerial-level field studies could also use QR-code system to store
crop variety or field position metadata.

The facility with which cameras can be currently swapped out
by changing a few interface scripts begs the question if this can
be extended to thermal or multi-spectral imagers. An issue with
thermal cameras is their low resolution. A key step in orthophoto
generation is the detection of common points in different images
using the SIFT algorithm (Lowe, 1999). This method exploits small,
granular image features that are not typically present in low-
resolution images. However, this problem can be expected to ame-
liorate as thermal camera resolutions improve so the pipeline
reported here can be considered to be prepositioned to take advan-
tage of such advances. The situation is different for multi-spectral
cameras that image selective channels (more than RGB but gener-
ally not many) at high spatial resolution. To incorporate such cam-
eras, white balancing would not be processed from the interface
script; instead it would be done using reference panels during
the camera spectral calibration step that precedes imaging. Lens
distortion removal would remain unaltered and TIFF files readily
handle multi-channel images. PhotoScan would need to process
channels in groups of three but this would be compensated for
by increasing the number of compute nodes as was suggested for
larger greenhouse studies. Thus, multi-spectral cameras do not
appear to present insuperable challenges.

To conclude, we have presented a low-cost, versatile, and high-
throughput phenotyping pipeline based on imaging technology to
quantify plant phenotypic traits under different environmental
conditions (both laboratory and field). Except for a minor step in
the field version, our pipeline integrates a series of fully automated
operations, including: image data acquisition, image data transfer
and management, genotype assignment, phenotypic trait extrac-
tion, and analytical processes. The use of interface scripts enabled
different camera types to be readily exchanged. This flexibility can
extend to multi-spectral cameras and, as resolution improves, to
thermal cameras as well, thus moving 3D sensing beyond the vis-
ible spectrum.
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