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Conventional phenotyping methods impose a significant bottleneck to the characterization of genotypic
and environmental effects on trait expression in plants. In particular, invasive and destructive sampling
methods along with manual measurements widely used in conventional studies are labor-intensive,
time-consuming, costly, and can lack consistency. These experimental features impede large-scale
genetic studies of both crops and wild plant species. Here, we present a high-throughput phenotyping
pipeline using photogrammetry and 3D modeling techniques in the model species, Arabidopsis thaliana.
We develop novel photogrammetry and computer vision algorithms to quantify 2D and 3D leaf areas
for a mapping population of 1050 Arabidopsis thaliana lines, and use 2D areas to analyze plant nastic
movements and diurnal cycles. Compared to the 2D leaf areas, 3D leaf areas show an uncorrupted growth
trend regardless of plant nastic movement. With optimized algorithms, our pipeline throughput is very
computationally efficient for screening a large number of plants. The pipeline not only supports measure-
ment of organ-level growth and development over time, but also enables analysis of whole-plant pheno-
types and, thus, identification of genotype-specific performance. Further, the accuracy results evaluating
the relationship between physical dimensions and 3D measurements indicate an R2 = 0.99, and the aver-
age 3D area processing time per plant is 0.02 s. Our algorithms provide both high accuracy and through-
put in plant phenotyping, thereby, enabling progress in plant genotypic modeling.

Published by Elsevier B.V.
1. Introduction

Interest in high-throughput plant phenotyping approaches has
increased in recent years (Fiorani and Schurr, 2013). Automated
approaches to measure traits will improve the efficiency and accu-
racy of plant phenotyping, which is critical to understanding how
genetic and environmental factors are linked to plant phenotypes
(Furbank and Tester, 2011; Fiorani and Schurr, 2013; Kjaer and
Ottosen, 2015). Studies seeking to characterize the genetic basis
of complex traits through either genome-wide association analyses
or quantitative trait locus (QTL) mapping depend, for instance, on
trait measurements in hundreds to thousands of replicate plants
(Clarke et al., 1995; Brachi et al., 2010). With the advent of next-
generation sequencing approaches, it is the rate of phenotyping
rather than marker development that now imposes the upper limit
on the size of mapping experiments. Various sensors, such as 3D
laser scanning sensors, RGB/near-infrared cameras, hyperspectral
sensors, thermal imaging systems, and chlorophyll fluorescence
imaging sensors, have recently been integrated into automated
phenotyping pipelines to estimate plant phenotypic traits in map-
ping populations (Rascher et al., 2011; Mahlein et al., 2012). Here,
we develop approaches and analyses for high-throughput pheno-
typing of leaf morphological traits.

Leaf morphological features can be important determinants of
plant performance, because leaf size and shape influence photo-
synthesis, stomatal conductance, and transpiration efficiency
(Juenger et al., 2005). Previous studies used imaging systems with
commercial or customized software to acquire areas of single
leaves and rosettes from 2D images (Candela et al., 1999; Pérez-
Pérez et al., 2002; Bylesjö et al., 2008; Weight et al., 2008;
Backhaus et al., 2010; Ali et al., 2012; Maloof et al., 2013; Easlon
and Bloom, 2014). Invasive and destructive plant sampling meth-
ods (e.g., harvesting plant leaves) were used in these studies during
image acquisition. Such methods have the disadvantage of pre-
cluding multiple measurements on a given replicate. In addition,
they are highly labor-intensive due to the large number of plants
needed for repeated harvests and the amount of manual work.
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2D imaging techniques can provide useful phenotypic informa-
tion, such as estimates of rosette area or time-series data of leaf
nastic movements that are indicative of circadian rhythms.
Mullen et al. (2006) used image processing software to manually
measure leaf inclination angle and study leaf movements over
short intervals. Hong et al. (2013), Dornbusch et al. (2014) and
Greenham et al. (2015) used imaging systems to track leaf tip
movements and estimate leaf inclination angles as a proxy for cir-
cadian cycles. These studies all reveal that nastic movements occur
on 24-h diurnal cycles. However, leaf tip tracking from a side view
does not allow for simultaneous detection of leaf areas that change
due to growth. On the other hand, nadir-looking views that detect
area will only be accurate once per day, when nastic movements
reach an angle perpendicular to the line of sight. Leaf area and
plant canopy measurements based on 3D plant structure can
resolve these limitations and provide both good size estimates
(regardless of plant nastic movements) as well as time-series data
necessary for estimates of circadian rhythms.

Modeling and analyzing plant 3D shape is a computationally-
intensive and time-consuming process (Paulus et al., 2014; Vos
et al., 2009; El-Omari and Moselhi 2011). Typically, there are two
types of sensors used for plant 3D modeling: active sensors and
passive sensors. Laser sensors such as LIDAR (Light Detection And
Ranging) are active sensors for sensing plant 3D shapes. They emit
a laser beam, and the time it takes for the reflected light to return
to the sensor is used to compute a depth map or generate a 3D
point cloud of the plant canopy. Point clouds are simply sets of
3D coordinates that, collectively, have the shape of the object of
interest. None of the points are connected, so phenotypes of inter-
est have to be inferred using complex algorithms.

Palacín et al. (2007) used a laser sensor to scan pear trees and
estimate canopy surface; Hosoi and Omasa (2009) utilized portable
LIDAR imaging technology to model tomato plant canopy in a
three-dimensional space; Keightley and Bawden (2010) used
ground-level LIDAR to estimate plant biomass. Coarse 3D measure-
ments were sufficient for the aims of these studies, but detailed
plant structures could not be quantified from the 3D models. Fur-
thermore, the 3D measurements of these studies were not col-
lected using an automated pipeline. Only limited numbers of
plants could therefore be analyzed during the growth period—too
few for studies seeking to quantitatively relate genotypes to phe-
notypes within dynamic environments (Granier et al., 2006;
Berger et al., 2010; Hartmann et al., 2011). On the other hand,
Kjaer and Ottosen 2015 used the commercial 3D laser triangulation
scanner PlantEye F300 to automate plant growth measurement.
This technology improves spatial and temporal resolution for
higher throughput plant phenotyping using a laser sensor.

In recent years, an increasing number of studies have used the
LIDAR-based LemnaTec Scanalyzer HTS system (http://www.lem-
natec.com) to obtain 3D point clouds. This system includes an
automated analysis pipeline that can extract a number of pheno-
typic traits (Green et al., 2012; Chen et al., 2014; Dornbusch
et al., 2014). However, the cost of the system presents a significant
impediment for many smaller research laboratories and
institutions.

Microsoft Kinect (https://www.microsoft.com/en-us/kinectfor-
windows/) is a low-cost sensor originally designed for computer
gaming, whose operation is based on time-of-flight measurements
for a raster pattern of infrared beams. It has become a very popular
choice for modeling 3D shapes in the robotic and computer vision
communities. Some studies have evaluated its utility in plant phe-
notyping (Chéné et al., 2012; Azzari et al., 2013; Paulus et al.,
2014). There are, however, several drawbacks. The throughput
using Kinect is relatively low, and therefore not suitable for high-
density time-series phenotyping of mapping populations. Addi-
tionally, its laser beams are not bright enough for outdoor daytime
use (Azzari et al., 2013). Data can be acquired during the night, but
doing so is biologically problematic as the laser wavelength of the
first Kinect model falls within the phytochrome absorption band.
Phytochromes are highly sensitive photoreceptors with many roles
in the control of plant processes so exposure to the laser could, in
principle, elicit undesired phenotypic responses. The recently-
released second Kinect model uses a longer wavelength that falls
outside of known photoreceptor sensitivity bands.

The second approach is to use passive sensors—in particular,
digital cameras—along with photogrammetric techniques to cap-
ture 3D models of plants. The major advantage of these techniques
is that because they are based on images, they can produce much
more detailed information about the surface features being imaged
and much faster data acquisition and process rate than laser-based
scanning. This information is contained in a texture image that is
painted onto the 3D model when it is displayed. Furthermore,
because a texture image is an image, it can be subjected to com-
mon image processing techniques to extract phenotypic informa-
tion of interest. Finally, digital cameras can be much less
expensive than laser-based active sensors like LIDAR.

Previous photogrammetry work includes that of Quan et al.
(2006) and Tan et al. (2007), who used the techniques to estimate
camera positions and produce point clouds, but did not extract any
phenotypes. Quan et al. (2006) proceeded beyond point clouds,
combining clustering, image segmentation, and polygon models
to create 3D canopy models. These were, however, of very coarse
resolution. Biskup et al. (2007) developed a stereo imaging system
using two digital cameras to model soybean plants in a three-
dimensional space. This, too, was a point cloud approach, but they
went on to produce false-color images of leaf angle. Santos and
Oliveira (2012) used stereo imaging system with photogrammetric
and computer vision algorithms to generate 3D models of plants,
but, as above, did not extract phenotypes. While the preceding
studies produced 3D plant canopy models, they used a small num-
ber of cameras whose positions and orientations were changed to
capture different viewing angles. Although only requiring a few
cameras is an advantage, the resulting low throughput does not
permit highly time-resolved studies for the large number of plants
used in mapping populations.

In this study, we first demonstrate an analysis using an indoor
imaging pipeline to extract time-series 2D rosette areas of a map-
ping population of 1050 Arabidopsis thaliana lines from images for
studying plant nastic movement, diurnal cycles, and plant growth.
We then used the pipeline to generate 10-day time-series of 3D
models with a one-hour temporal resolution for the same plant
population. Sequentially, the pipeline color and optical distortion
corrects RAW images of potted plants on growth chamber shelves,
generates 3D models of half-shelf areas, segments individual
plants, pairs them with their genotypes, and then extracts time-
series data of leaf growth and movement.
2. Materials and methods

2.1. Imaging acquisition system

The imaging acquisition process used the same indoor pipeline
described in a previous study (An et al., 2016), to measure shade-
avoidance responses in a nested association mapping (NAM) pop-
ulation of Arabidopsis thaliana. In this study, 108 Canon Powershot
S95 cameras were mounted on six 0.80-by-2.13-m frames facing
straight down on six shelves that received two different lighting
treatments (Fig. 1). On each shelf, 18 cameras were mounted in a
2-row stationary camera frame at a 0.4-m height and pho-
tographed 24 4-by-4 pot flats hourly. A modified intervalometer
script with Canon Hack Development Kit (CHDK) firmware trig-
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Fig. 1. Imaging acquisition system. The 18 cameras were mounted in two rows on each shelf. All of the cameras were pointed straight down as nadir viewing angle.
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gered the cameras simultaneously at the beginning of each hour. In
order to ensure all images had at least 50-percent overlap, the focal
length of the cameras was set at 28 mm (35 mm equivalent) to
maximize the field-of-view (FOV). Daytime (5:00 am–8:00 pm)
images were stored and transferred to a local data server and pro-
cessed for subsequent analyses. The RAW image file format was
selected for preserving all image metadata.
2.2. 2D rosette analysis

2.2.1. Image pre-processing, orthophoto generation, single-plant
extraction, and genotype assignment

The first processing steps used the automated high-throughput
phenotyping pipeline introduced in An et al., 2016. Briefly, the
Canon Digital Photo Professional (DPP) program and a customized
color-grid vinyl poster were used for RAW image color correction,
optical distortion correction, and TIFF conversion. The converted
TIFF images were imported into the Agisoft Photoscan Pro (Photo-
scan) program (http://www.agisoft.com) to generate an ortho-
photo for each shelf for correcting perspective distortion, so that
each pixel of an orthophoto was being viewed straight down and
the pixel size of the orthophoto was 0.1 mm.

Each orthophoto was first segmented to a plant-only binary
image using the Normalized Green–Red Difference Index (NGRDI)
(Hunt et al., 2005) and the Otsu threshold method to eliminate
non-plant pixels. In a parallel step, the orthophoto was segmented
to detect the pot edges, which aided in the isolation of replicates
plants. Segmentation was augmented by use of the probabilistic
Hough Transformation to search for pot edges. The output of these
steps was a set of coordinate grids delineating pot edges.

The pots were tracked during the entire growth period using a
customized color dot system, during which they were periodically
repositioned to randomize any effects of location within the
growth chamber. Based on records made at planting, the genotype
of each plant was assigned to its grid cell. Lastly, single plant binary
images, each with its known genotype, were extracted from the
grid cells. The detail of the processes discussed above were pre-
sented in An et al. (2016)
2.2.2. 2D rosette area analysis for plant nastic movement and diurnal
cycle analysis

Plant 2D rosette area in each plant-only binary image can be
simply calculated by computing the total number of white pixels
in each single-rosette binary image. In this study, we tracked one
plant during a 10-day growth period and used the Fourier Trans-
form to study the characteristics of plant nastic movements. The
hourly 2D rosette area values of the plant were calculated during
this 10-day period. Because of the experimental design of the
chamber study, no image data were collected during the night
(9:00 pm–5:00 am). In order to extract the characteristics of the
growth pattern, a linear interpolation algorithm was applied to
estimate the rosette area for night hours. The Savitzky–Golay filter
was utilized in the following step to yield a smoothed growth
curve and minimize possible noise in the rosette area
measurements. A third degree Savitzky–Golay filter was used to
prevent curve oversmoothing. In order to reveal the 2D rosette area
oscillation caused by the nastic movements, the Matlab detrend
algorithm (http://www.mathworks.com/help/matlab/ref/detrend.
html) was used to eliminate the ascending growth trend from
the smoothed 10-day 2D rosette area curve. The Fourier Transform
was then applied to the resulting data to study the diurnal
cycle.
2.3. 3D rosette analysis

2.3.1. Camera array calibration and shelf-based 3D mesh generation
Camera calibration is the process of determining which light

beam excites a given pixel of the image sensor (Bellasio et al.,
2012). This entails solving for two sets of numbers. Intrinsic param-
eters specify the optical behavior of the camera itself. Extrinsic
parameters tell where the camera is positioned in space and the
direction that it is pointing. Intrinsic parameters are often deter-
mined one camera at a time using special targets and software;
however, this was not feasible due to the large number of cameras
in this study. Instead, the two-row camera array of each shelf was
calibrated as one imaging system using Photoscan’s built-in cam-
era calibration function.

The customized color-grid poster was printed on a shelf-size
(0.80 m � 2.13 m) vinyl panel, which was mounted and stretched
flat on each shelf surface before the experiment started. The poster
was photographed by the 18-camera array of each shelf. After pre-
processing by DPP, all 18 images were imported into Photoscan to
build a sparse point cloud and a dense point cloud (Fig. 2). Photo-
scan first estimated camera intrinsic parameters, including the
image dimension in pixels, the focal length, and the coordinates
of the pixel intersected by the optical axis. Other intrinsic param-
eters estimated by Photoscan describe the radial and tangential
lens distortion. Because early experience showed that Photoscan

http://www.agisoft.com
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Fig. 2. Camera calibration. The dense point cloud in a three-dimensional space generated by Photoscan for calibrating a two-row camera system using a customized color-
grid poster. The blue boxes are the estimated camera positions in a three-dimensional space; the black lines show the orientations of each camera. The camera intrinsic
parameters were estimated by this process. The bottom image is the orthophoto of the color-grid poster generated after the calibration process.
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was not fully effective at correcting lens distortion, an initial stage
of lens distortion removal was first performed by DPP. An ortho-
photo and a 3D mesh surface of the color-grid poster were also
generated by Photoscan for 3D area validation (Fig. 2).

Photoscan next calculated the extrinsic parameters that are the
X, Y, and Z coordinates of each camera’s focal point and the roll,
pitch, and yaw angles of the optical axis. Fig. 2 shows the cloud
of over four million points that Photoscan produced during the cal-
ibration process as well as a visual depiction of selected internal
and external camera parameters. After ensuring the estimation
errors of 18 camera positions were smaller than 0.5 pixels, all cal-
ibration parameters were exported to a camera calibration xml file
that was used in all subsequent analyses.

Due to the camera sensor limitation, after plants were placed on
the shelf, there was not enough image overlap between the two
rows of cameras to build a 3D model for the entire shelf. Instead,
half-shelf models were constructed, each from a set of nine images,
along with the camera calibration data just described. The output
was a file in Polygon File Format (PLY), which is a standard format
for colored 3D mesh data. Fig. 3 shows a rendering of a half-shelf
mesh model.
2.3.2. Single 3D plant model segmentation and plant genotype
assignment

In most computer vision studies, 3D mesh segmentation is a
computationally-intensive and time-consuming process. For a
half-shelf 3D mesh such as the one shown in Fig. 3, there are
approximately 11 million points (vertices) connected to over 23
million faces (triangles). Locating the triangles comprising individ-
ual plants within the mesh depicting all objects in the half-shelf
was technically infeasible with conventional computer vision algo-
rithms. We developed a novel, computationally-efficient method
to (1) segment single-plant 3D models from the half-shelf meshes
and (2) assign the corresponding genotype designations simultane-
ously. The key is the half-shelf PLY file exported from Photoscan
and the segmented orthophoto.

There are two main sections of information contained in each
PLY file. The first section contains the X, Y, Z vertex positions, unit
normals (magnitude-one vectors perpendicular to the plant sur-
face at each vertex position), and the RGB vertex colors. When
the mesh is rendered, colors in between the vertices can be filled
in by interpolation. Alternatively, the faces can be colored from
data in a texture file, which is synthesized from the original



Fig. 3. A half-shelf 3D mesh generated by Photoscan. The top center is the 3D mesh generated by one-row camera array; the lower-left is a close-up view for one 4-by-4 flat;
the lower right is a close-up view for one plant.

Fig. 4. Single-plant binary image for extracting a single-plant 3D model. Left: A single-plant binary image with the original orthophoto’s dimension. The black area in the left
image is used to eliminate the non-related mesh. Right: the close-up view of this plant.
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Fig. 5. A single-plant vertex map. Left: A single-plant vertex map for representing the saved vertices of the 3D mesh. The grey pixels stand for the saved corresponding
vertices from the half-shelf 3D mesh. Black area means that the corresponding area on the mesh was eliminated. Right: the close-up view of this vertex map.
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images. The latter option was used here because it provides more
spatial detail.

The second section describes the triangular faces by listing the
ID numbers for each of the three vertices that bound the triangle.
Also listed are the 2D pixel coordinates where each vertex is
located in the orthophoto. This builds a relationship between 3D
and 2D, but the linkage is one-directional. That is, from every 3D
vertex one can locate a 2D pixel, but from that 2D pixel one cannot
easily locate its corresponding 3D vertex.

We located binary images for each single plant, but they were
left embedded in a background that was the same size as the
orthophoto (Fig. 4). Then, all the vertices in the mesh were
scanned, and the colors of their corresponding orthophoto pixels
were examined. Any vertex linked to a black pixel could not be a
3D point in the plant and was excluded from the orthophoto
Fig. 6. A single-plant 3D model. The extracted single-plant 3D model generated by usin
difference between the orthophoto and the 3D mesh.
(Fig. 5). Vertices linked to the plant pixels were color-coded by
the plant IDs. By using the color-coded points, the vertices and
faces of each plant were efficiently sorted and then extracted from
the half-shelf 3D mesh. Finally, these extracted vertices and faces
were exported into one PLY file in order to generate single-plant
3D models for each plant (Fig. 6). The beauty of this process is that,
because genotype information of the single-plant binary image is
assigned during its extraction, the genotype of the 3D model is
automatically known. Since the 3D mesh has much finer resolution
than 2D texture image, the 3D mesh segmentation in Fig. 6 shows
some rough edges.

2.3.3. 3D area measurement for a single plant
To estimate the area of the plant, it is only necessary to sum the

areas of the triangular faces of which its 3D model is composed.
g its segmented orthophoto. The rough leaf edges are due to the spatial resolution



Fig. 7. Plant orthophoto compared to 3D model. One sample plant was analyzed in this article. The left image is the orthophoto of this plant, and the right image is its 3D
model before single-plant 3D model extraction. The black area in the left Fig. is the stitching artifacts due to high leaf curvature after orthophoto generation process.
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The area of each face was computed by: (1) converting its three
vertices (A, B, and C) into two vectors, AB

!
and AC

!
, (2) calculating

the magnitude of the cross product of these two vectors, which
equals the area of a parallelogram having these two vectors as
sides, and 3) the face area is half of this parallelogram’s area.
2.3.4. Comparison between time-series 2D and 3D rosette areas
In order to compare rosette areas extracted based on 2D images

and 3D models, a plant (Fig. 7) was tracked during a 10-day growth
period, and both its 2D and 3D areas were calculated every hour.
Because no images were collected from 9:00 pm to 5:00 am each
day, linear interpolation was used to estimate rosette area over-
night. Then, the Savitzky–Golay filter was applied to yield a
Fig. 8. Half-shelf 3D mesh before and after camera calibration. A) The half-shelf 3D mes
this point. B) The same model with accurate camera intrinsic parameters; the 3D mesh
smoothed growth curve. Because the 2D and 3D systems had dif-
ferent units (pixel and mesh coordinates, respectively), the two
areas could not be compared directly. Therefore, the values were
converted to Z scores on a daily basis and plotted together for com-
parison. This statistical analysis was implemented in Matlab.
3. Results and discussion

In this study, we demonstrated a novel method to: (1) recon-
struct time-series shelf-based 3D meshes for a NAM population
of Arabidopsis with a stationary multi-camera array imaging sys-
tem in a controlled environment, (2) capture time-series of 2D
rosette areas for studying plant nastic movements and diurnal
h showed curvature before camera calibration. No plant area could be estimated at
was flat.



Fig. 9. 3D measurement accuracy test. Accuracy test of the 3D measurements. X-
axis is the actual physical size of the objects and y-axis is the measurements from
the 3D meshes. The R square is 0.99 and the slope of the linear regression is 1.01.

Fig. 10. Plant nastic movement and diurnal cycle analysis. (A) The graph is the 16-h rose
detrended plant growth curve to show the plant nastic movement; (C) the Fourier Transfo
images for this plant. (For interpretation of the references to color in this figure legend,
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cycles, (3) extract single-plant 3D models from background 3D
mesh, (4) assign genotypic information to replicate plants, and
(5) compute time-series 3D areas during a 10-day growth period.
This process was integrated into our high-throughput phenotyping
pipeline in order to automate extraction of 3D plant phenotypic
traits. These methods enable phenotyping throughput needed for
genomic mapping studies, and we anticipate they could be trans-
lated to other morphological phenotypes of interested.

3.1. Camera array calibration and measurement accuracy test

Few previous studies have taken camera intrinsic parameters
into account when using digital cameras for plant phenotyping,
which could greatly reduce image-based phenotypic measurement
accuracy. An et al. (2016) demonstrated that camera calibration is
a critical step to enhance accuracy before using images to quantify
plant phenotypes. Fig. 8A shows the 3D modeling results before
camera calibration. Due to the linear camera array setup, the
intrinsic parameters could not be estimated accurately by Photo-
scan because no information was available from other viewpoints.
Without correct camera intrinsic parameters, both the one-row
camera array and the half-shelf 3D mesh showed curvature. The
lack of information arose because there was not enough vertical
clearance for the fields of view of cameras in separate rows to over-
lap when plants were present. To ensure effective camera array
calibration, the field of view of the camera arrays should ensure
tte area measurements (black dots) and smoothed growth curve (red curve); (B) the
rm to the diurnal movement is a daily cycle; (D) time-series 2D single-rosette binary
the reader is referred to the web version of this article.)
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at least 50% overlap between rows of cameras, that is, experimen-
tal plants are in the field of view two cameras.

Before the pots were placed on the shelf surface, the vertical
space was sufficient for Photoscan to group both rows of cameras
together for camera intrinsic parameter estimation. By using the
camera intrinsic parameters estimated by the calibration, both
the one-row camera array and the half-shelf 3D mesh are flat
and the estimation errors were less than 0.5 pixels, as Fig. 8B
shows. Comparing the studies (Quan et al., 2006; Tan et al.,
2007; Biskup et al., 2007; Santos and Oliveira 2012) introduced
previously, our 3D imaging system can quantify high-accuracy
3D plant models with much higher throughput for a large number
of plants in a mapping populations.
Fig. 11. Z score comparison between 3D area and 2D area. Daily Z scores comparisons
period. (For interpretation of the references to color in this figure legend, the reader is r
Due to space limitations and an attendant limit on the number
of replicate plants that could be grown at one time, it was not fea-
sible to carry out destructive harvests and collect direct rosette
area measurements to validate the modeled 3D rosette area. In
principle, the model accuracy could be tested by comparing the
physical size of objects to the measurements on 3D mesh. For
the accuracy test in this study, a scale factor was first determined
by computing the ratio of the physical sizes of the color grids on
the poster and the measurements on 3D mesh of the poster model.
This scale factor was then used to translate the half-shelf 3D plant
models from 3D units to a scientific units. The physical sizes of ten
small color dots, ten large color dots, ten pots and ten 4-pot by
4-pot trays of each shelf were measured, and those objects were
between 3D areas (red curve) and 2D areas (black curve) during a 10-day growth
eferred to the web version of this article.)
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also measured from 3D meshes. The slope of the linear regression
was 1.01 and the R square was 0.99, demonstrating that accurate
plant measurements could be extracted from the 3D mesh (Fig. 9).

3.2. Plant nastic movement and diurnal cycle analysis

The black dots in Fig. 10A are the actual time-series 2D rosette
area measurements, and the red curve is the smoothed 2D rosette
area curve after interpolation for night-time data. The oscillation
caused by plant nastic movement in the red curve is visible but
is distorted by the overall pattern of increasing size that will also
affect the Fourier Transform results. There is noticeable noise at
Day 4, Day 6 and Day 8 in Fig. 10A. This likely arises from pot rota-
tion, which took place every other day and was used to randomize
microenvironmental variation in the growth chamber across repli-
cates plants. After detrending the 2D rosette area curve (Fig. 10B),
the daily time at which this plant reaches its maximum apparent
area is between 9:00 am (ZT4) and 10:00 am (ZT5). Furthermore,
the oscillation is more obvious than without curve detrending.
The peak of the Fourier Transform (Fig. 10C) is at a 24-h frequency.
This result is similar to previous studies (Hong et al., 2013;
Dornbusch et al., 2014; Greenham et al., 2015) and shows that
our automated pipeline can extract diurnal patterns. Fig. 10D
shows the overall daily growth of the plant. The individual leaf pic-
tures were taken at 6:00 am (ZT1) each day, when the leaves were
almost horizontal. Fig. 10D shows rosette leaves with seemingly
straight edges. This leaf shape distortion arises from rosette over-
lap between adjacent experimental plants. Leaf overlap was dis-
cernible by Day 10, potentially leading to inaccurate 2D rosette
area measurements; measurements therefore stopped at Day 10.

3.3. Time-series comparison between 2D area and 3D area

Fig. 11 superimposes the day-by-day Z score plots, directly
comparing the 2D (black curve) and 3D (red curve) areas. Across
the 10-day growth period, the 3D areas mainly show slow linear
growth trends within each day and lack the oscillations caused
by plant nastic movement in 2D areas. Also, the starting and end-
ing measurements for both 2D and 3D curves are very close to one
another within each day at times when the leaves are closest to
horizontal.

Comparing the plants’ areas as measured from the 3D model
and a corresponding 2D image during a 10-day growth period
showed that both approaches captured increasing leaf areas, but
that the 3D data was uncorrupted by plant nastic movements. This
result shows that areas measured in a 3D space might be more
accurate and reliable when modeling and analyzing biological
growth responses. Furthermore, 3D plant models can provide a
unique perspective to study plant canopy structure and plant
growth patterns under different environmental conditions with
non-invasive and non-destructive sampling methods.

3.4. Single-plant 3D modeling pipeline throughput

The processing pipeline has very high imaging and measure-
ment throughput for 3D and 2D plant areas. For each half-shelf,
it took approximately 35 min for image pre-processing, orthophoto
generation, 3D mesh reconstruction, binary image segmentation,
and genotype assignment, as a result of GPU acceleration with
OpenCL. However, once the 3D mesh is stored in the system mem-
ory, it only takes 3.84 s to process the half-shelf 3D mesh. In other
words, it took 0.02 s on an Intel Core i7 processor to extract a
single-plant 3D model from the half-shelf 3D mesh. For each plant,
it took approximately 3.2 s to compute hourly 2D and 3D areas
during a 10-day growth period (total: 160 plants). This improve-
ment allowed us to screen 1050 plants within 50 s for their 2D
and 3D areas, which has not been accomplished previously by rel-
atively low-cost imaging systems.
4. Conclusion and perspectives

In this study, we presented novel photogrammetry and com-
puter vision algorithms to quantify leaf morphological traits, 2D
and 3D leaf areas, and diurnal cycles of leaf movement with rela-
tively low-cost imaging systems. Such systems could provide
high-accuracy 3D canopy models for large mapping populations
of Arabidopsis with very high throughput: the processing time
for single-plant 3D model extraction and 3D area calculation was
extremely fast (0.02 s per plant) after applying optimized algo-
rithms. The high-throughput phenotyping pipeline presented in
this study showed significant potential for large-scale noninvasive
plant measurement. This not only supports improved understand-
ing of plant growth and development in a time-series manner but
also can help determine the performance of specific genotypes by
analyzing whole-plant phenotypic traits. The current limitation is
the runtime for generating and reading the 3D canopy models;
the runtime is approximately 35 min due to the large number of
vertices and faces of each half-shelf mesh. For future work, the
camera array step should be redesigned so that an entire shelf of
plants is imaged with grouped two-row camera systems. A further
investigation on how to optimize the runtime for reading half-shelf
mesh is needed in order to improve current processing throughput.
Leaf morphological traits, such as leaf length measured in the
three-dimensional space, may be quantified as a comparison to
2D leaf length.
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