Plant primary productivity: <u>Environmental</u> <u>Impacts on C-Fixation (EICF)</u>

RJ Cody Markelz NSF Postdoctoral Fellow PBI200C- Spring 2016

Today

- Quick Review
- C₄ photosynthetic response to climate change variables in the field
- Physiological genomics of C₃ respiration
- Gas exchange measurement theory
- Gas exchange equipment demo (LiCOR 6400)
- Paper discussion
- C₃ photosynthesis model

Intercellular CO_2 concentration (c_i)

- C₄ A/Ci curves have a different shape that reflects their biochemistry
- C₃ photosynthesis is stimulated directly by elevated CO₂
- Can you extend the supply functions on this curve?

Generic C₄ A/C_i Response Curve

% Arable land in C₄ Crops

From Leakey (2009) Proceedings of the Royal Society B

- C₄ crops are very important for global food production
- US Midwest produces 40% of the world's annual maize crop

Proposed interaction mechanism between water availability and elevated CO₂ on C₄ photosynthesis

Hypotheses

 \triangleleft

Limiting N supply will reduce photosynthetic capacity, resulting in CO₂-limited A under current [CO₂]

Drought will increase stomatal and non-stomatal limitations to *A*, which are ameliorated by elevated [CO₂]

Testing physiological mechanisms of maize response to elevated [CO₂]

SoyFACE - A unique facility to study soybean and maize at future CO₂ and ozone concentrations, temperatures and drought conditions

EXPERIMENTAL DESIGN

FACE technology: 4 ambient [CO₂] plots (380 µmol mol⁻¹) 4 elevated [CO₂] plots (550 µmol mol⁻¹) **Fumigation from planting to harvest** 34N43 Pioneer Hi-Bred

Elevated [CO₂] has no effect on photosynthetic capacity in the absence of drought

Combine midday field C_i data with lab A/C_i curves to examine operating points

Markelz, Strellner and Leakey (2011) Journal of Experimental Botany

Elevated [CO₂] reduces stomatal conductance, but has no effect on photosynthetic capacity in the absence of drought

 Reduced stomatal conductance in elevated [CO₂] reduces plant water use

26,000 observations provides a high temporal and spatial resolution of water availability

Markelz, Strellner and Leakey (2011) Journal of Experimental Botany

Drought Stress

Markelz, Strellner and Leakey (2011) Journal of Experimental Botany

Drought Stress

Markelz, Strellner and Leakey (2011) Journal of Experimental Botany

Markelz, Strellner and Leakey (2011) Journal of Experimental Botany

Markelz, Strellner and Leakey (2011) Journal of Experimental Botany

- Low N reduced yield by 20%
- Benefits of elevated [CO₂] for leaf level photosynthesis were not enough to contribute to an increase in yield
- Timing of the drought with plant development may be important (i.e. silking date)

Markelz, Strellner and Leakey (2011) Journal of Experimental Botany

C₃ Arabidopsis

- Respiration provides the energy and carbon skeletons needed for plant growth and maintenance
- There is poor mechanistic understanding of the link between carbon supply, respiration rates, and plant productivity

Pritchard et al. (1999) Global Change Biology 5: 807-837

Leakey ADB, Ainsworth EA, Bernard SM, Markelz RJC, Ort DR et al. (2009) Global Change Biology 15: 1201-1213

- Post-genomics era allows for a detailed systems level understanding of climate change biology
- Study of plant responses through this integrative framework can advance both mechanisms and provide targets for genetic manipulation

Davey et al. 2004 *Plant Phys.* Gifford 2003 *Func. Plant Biol.* Wang and Curtis 2002 *Plant Ecol.* Drake et al. 1999 *P,C&E*

- Increase in respiration due to carbohydrate increase (more supply)
- Decrease in respiration because protein turnover is the major sink for respiratory energy (more demand)
- No change justified by cancellation of the other two

- These responses are consistent with the literature.
- The stimulation of photosynthesis to elevated [CO₂] was greater under ample N availability and matches the biomass response.
- Greater substrate supply for respiration?

- The stimulation of photosynthesis in elevated [CO₂] lead to greater leaf starch mobile carbohydrate content at midnight.
- These responses are also consistent with literature.

Accurately measuring individual Arabidopsis leaf respiration is non-trivial

Basic System Layout

Five gas exchange systems running simultaneously allows one person to accurately measure respiration rates of > 50 plants in less than two hours

- The stimulation of leaf respiration to elevated [CO₂] was greater in the ample N treatment
- There was a stimulation of leaf respiration despite a reduction in leaf N in the limiting N treatment
- This system allows us to detect relatively small treatment differences (12%) that other non-specialized systems failed to detect.

- Past research focused on mature leaf tissue
- Respiratory demand is greater for developing leaves due to growth *and* maintenance processes
- How is the stimulation of respiration in elevated [CO₂] coordinated through leaf development?

Systemic Signaling

Lake et al. (2002) J. Exp. Bot. 228: 651-662; Coupe et al. (2006) J. Exp. Bot. 57: 329-341

- Systemic signaling from mature leaves in elevated [CO₂] to developing leaves not in elevated [CO₂] alters epidermal patterning
- Mature leaves relaying information to developing leaves about environmental conditions

Source-Sink Relationships

Schneidereit et al. (2008) Planta 228: 651-662

- AtSUC2 promotor:GUS Fusion---Blue is where sucrose can be transported into the phloem for distribution around the plant
- Clear sink-to-source developmental transition starting at the leaf tip

Combine physiology, high-throughput phenotyping, and genomics

- Leaf respiration decreases across leaf development
- No difference in respiration rates between ambient and elevated [CO₂] in rapidly expanding sink tissue
- Greater leaf respiration rates in elevated [CO₂] as leaves transition into source tissues later in leaf development

• No detectable leaf starch content during expanding time-point (23 DAG)

• The difference in transcript abundance ambient and elevated [CO₂] increases as leaves develop

Today

- Quick Review
- C₄ photosynthetic response to climate change variables in the field
- Physiological genomics of C₃ respiration
- Gas exchange measurement theory
- Gas exchange equipment demo (LiCOR 6400)
- Paper discussion
- C₃ photosynthesis model

$A \approx ([CO_2]_{ref} - [CO_2]_{sample}) * flow rate/leaf area$

Beer's Law

 $A = I_0 - I_1$ *I* is intensity

 $A = \alpha lc$

A is absorption α is absorption coefficient l is pathlength c is concentration

4 key components of IRGA-based gas exchange system

Detector V α source IR – IR absorbed by CO₂ or H₂O

So, concentration absorbance and signal at detector

ABSORPTION SPECTRA FOR MAJOR NATURAL GREENHOUSE GASES IN THE EARTH'S ATMOSPHERE

[After J. N. Howard, 1959: Proc. I.R.E. 47, 1459; and R. M. Goody and G. D. Robinson, 1951: Quart. J. Roy. Meteorol, Soc. 77, 153]

Advantages of open gas exchange system

- •Steady state conditions no change in [CO₂] or [H₂O]
- •Easy to control and vary RH, temperature, c_i

<u>Disadvantages of open gas exchange system</u> •Requires appropriate leaf area/rate to be sampled to get sufficient signal to noise ratio

[CO₂]_{in}
[CO₂]_{out}

Open gas exchange system

Steady state conditions allow easy measurement of response curves (A/ c_i , light, vpd) and dynamic photosynthesis in response to sunflecks, O₂ pulses...

$A \approx ([CO_2]_{ref} - [CO_2]_{sample}) * flow rate/leaf area$

Figure 27-7. The LCF lower chamber attached, and the upper chamber ready.

Figure 27-8. The LCF attached to the sensor head. The main cable can be routed behind the quantum sensor, and through the tripod mount (remove to do this).

